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Abstract. The computational singular perturbation (CSP) method of Lam and Goussis is
an iterative method to reduce the dimensionality of systems of ordinary differential equations with
multiple time scales. In [J. Nonlinear Sci., 14 (2004), pp. 59–91], the authors of this paper showed
that each iteration of the CSP algorithm improves the approximation of the slow manifold by one
order. In this paper, it is shown that the CSP method simultaneously approximates the tangent
spaces to the fast fibers along which solutions relax to the slow manifold. Again, each iteration
adds one order of accuracy. In some studies, the output of the CSP algorithm is postprocessed by
linearly projecting initial data onto the slow manifold along these approximate tangent spaces. These
projections, in turn, also become successively more accurate.
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1. Introduction. Complex chemical reaction mechanisms typically involve tens
or even hundreds of reactants participating in a multitude of reactions, which occur
on a broad spectrum of time scales ranging from microseconds to seconds. In these
and other systems with multiple time scales, it is often the case that the fastest modes
are exhausted after a brief transient period and become dependent on the slower ones.
In terms of dynamics in the state space, the fast transient dynamics bring the orbits
close to lower-dimensional manifolds where the dynamics are slower.

Reduction methods in chemical kinetics are designed to locate these lower-
dimensional manifolds and, hence, to achieve a systematic decrease in the size and
complexity of the systems. In the state space, these manifolds are parametrized by
a subset of all of the variables, commonly known as reaction progress variables. For
a fixed set of values of these variables, the values of the complementary variables are
then determined by the corresponding point on the lower-dimensional manifold. As
a result, one needs only to track the dynamical evolution of the progress variables on
the lower-dimensional manifold; the concentrations of the complementary variables
may be found from look-up tables. Moreover, the reaction progress variables may be
a predetermined set of state variables, or they may be determined in the course of the
computation.
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Among the reduction methods currently in use are the quasi-steady state approx-
imation (QSSA), the intrinsic low-dimensional manifold (ILDM) method of Maas and
Pope, an iterative method by Fraser and Roussel, the method of invariant manifolds
(MIM) of Gorban and Karlin, the computational singular perturbation (CSP) method
of Lam and Goussis, and a variety of other methods; references are given in [12], [32],
and [34].

In the QSSA method [3, 28, 29], chemical intuition is employed to identify re-
actants whose concentrations equilibrate relatively fast. Then the right members of
the ordinary differential equations for these concentrations are set to zero to yield
algebraic equations, and in turn the solution of these equations is an approximation
of the slow manifold.

In the ILDM method [18, 19], the Jacobian of the vector field is partitioned at
each point of the phase space into a fast and a slow component, and a basis for the
slow subspace is generated by means of a Schur decomposition. The ILDM, which
approximates the slow manifold, is then defined as the locus of points where the vector
field lies entirely in the slow subspace.

The iterative method [3, 27] is derived formally from the invariance equation—a
partial differential equation that is satisfied by all invariant manifolds and thus also by
the slow manifold. At each iteration, the terms of the invariance equation involving
derivatives are evaluated at the approximation of the slow manifold available from
the previous iteration, while all algebraic terms are left evaluated at a general point
of the phase space. This reduces the invariance equation to an algebraic equation,
which can be solved to yield the new approximation of the slow manifold. Asymptotic
analyses of this iterative method and of the ILDM method are presented in [12].

The MIM [4, 5, 6, 7, 8] also exploits the invariance equation satisfied by a slow
manifold, and it is constructed so that the reduced equations on the approximate slow
manifold satisfy a thermodynamic consistency requirement. An initial approximation
of the slow manifold (for example, the QSSA or the equilibrium approximation) is
used to seed the method. The parametrization of this approximate manifold induces
a projection operator onto its tangent space—as well as a complementary projection
operator onto the tangent space of the approximate fast dynamics—and the invariance
equation is expressed in terms of this complementary projection operator. Then a
Newton iteration is carried out to obtain a more accurate approximation. This cycle is
repeated until the desired accuracy is obtained. At any step, the projection operator,
and hence the parametrization of the approximate slow manifold, may be chosen so
that the reduced equations on the manifold are thermodynamically consistent.

The CSP method was first proposed by Lam and Goussis [9, 13, 14, 15, 16] and is
widely used, for example, in combustion modeling [10, 17, 20, 21, 30, 31]. The method
is essentially an algorithm to find successive approximations to the slow manifold and
match the initial conditions to the dynamics on the slow manifold. Moreover, as is
also the case with the reductions methods listed above, it is generally applicable to
systems of nonlinear ordinary differential equations with simultaneous fast and slow
dynamics where the long-term dynamics evolve on a low-dimensional slow manifold
in the phase space.

In a previous paper [34], we focused on the slow manifold and the accuracy of the
CSP approximation for fast-slow systems. In such systems, the ratio of the charac-
teristic fast and slow times is made explicit by a small parameter ε, and the quality
of the approximation can be measured in terms of ε. By comparing the CSP mani-
fold with the slow manifold found in Fenichel’s geometric singular perturbation theory
[2, 11], we showed that each application of the CSP algorithm improves the asymptotic



FAST AND SLOW DYNAMICS FOR THE CSP METHOD 615

accuracy of the CSP manifold by one order of ε.
In this paper, we complete the analysis of the CSP method by focusing on the

fast dynamics. According to Fenichel’s theory, the fast-slow systems we consider have,
besides a slow manifold, a family of fast stable fibers along which initial conditions
tend toward the slow manifold. The base points of these fibers lie on the slow manifold,
and the dynamics near the slow manifold can be decomposed into a fast contracting
component along the fast fibers and a slow component governed by the motion of the
base points on the slow manifold. By comparing the CSP fibers with the tangent
spaces of the fast fibers at their base points, we show that each application of the
CSP algorithm also improves the asymptotic accuracy of the CSP fibers by one order
of ε.

Summarizing the results of [34] and the present investigation, we conclude that
the CSP method provides for the simultaneous approximation of the slow manifold
and the tangents to the fast fibers at their base points. If one is interested in only
the slow manifold, then it suffices to implement a reduced (one-step) version of the
algorithm. On the other hand, if one is interested in both the slow and fast dynamics,
then it is necessary to use the full (two-step) CSP algorithm. Moreover, only the full
CSP algorithm allows for a linear matching of any initial data with the dynamics on
the slow manifold.

The CSP method does not require an a priori separation of the variables into
fast and slow nor that there is an explicit small parameter such as is used in singular
perturbation theory. It requires only that there is a separation of time scales so that
some (combinations of) species are fast and some are slow. For the sake of the analysis
here, it is natural to take the a priori separation as given and measured by an explicit
small parameter ε.

This paper is organized as follows. In section 2, we recall the relevant results
from Fenichel’s theory and set the framework for the CSP method. In section 3, we
outline the CSP algorithm and state the main results: Theorem 3.1 concerning the
approximation of the slow manifold, which is a verbatim restatement of [34, Theo-
rem 3.1], and Theorem 3.2 concerning the approximation of the tangent spaces of the
fast fibers. The proof of Theorem 3.2 is given in section 4. In section 5, we revisit the
Michaelis–Menten–Henri mechanism of enzyme kinetics to illustrate the CSP method
and the results of this article. Section 6 is devoted to a discussion of methods for
linearly projecting initial conditions on the slow manifold.

2. Slow manifolds and fast fibers. Consider a general system of ordinary
differential equations,

dx

dt
= g(x),(2.1)

for a vector-valued function x ≡ x(t) ∈ Rm+n in a smooth vector field g. For the
present analysis, we assume that n components of x evolve on a time scale charac-
terized by the “fast” time t, while the remaining m components evolve on a time
scale characterized by the “slow” time τ = εt, where ε is a small parameter. (The
assumption that the variables can be separated once and for all into fast and slow
variables, where the characteristic times are related by a fixed parameter ε, is made
for the sake of the analysis, as noted in section 1. The assumption is not necessary for
the applicability of the CSP method, which requires only a separation of time scales.)
We collect the slow variables in a vector y ∈ Rm and the fast variables in a vector
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z ∈ Rn. Thus, the system (2.1) is equivalent to either the “fast system”

y′ = εg1(y, z, ε),(2.2)

z′ = g2(y, z, ε)(2.3)

or the “slow system”

ẏ = g1(y, z, ε),(2.4)

εż = g2(y, z, ε).(2.5)

(A prime ′ denotes differentiation with respect to t and a dot ˙ differentiation with
respect to τ .) The fast system is more appropriate for the short-term dynamics and
the slow system for the long-term dynamics of the system (2.1).

In the limit as ε tends to 0, the fast system reduces formally to a single equation
for the fast variable z,

z′ = g2(y, z, 0),(2.6)

where y is a parameter, while the slow system reduces to a differential equation for
the slow variable y,

ẏ = g1(y, z, 0),(2.7)

with the algebraic constraint g2(y, z, 0) = 0.
We assume that there exist a compact domain K and a smooth function h0 defined

on K such that

g2(y, h0(y), 0) = 0, y ∈ K.(2.8)

The graph of h0 defines a critical manifold M0,

M0 = {(y, z) ∈ Rm+n : z = h0(y), y ∈ K},(2.9)

and with each point p = (y, h0(y)) ∈ M0 is associated a fast fiber Fp
0 ,

Fp
0 = {(y, z) ∈ Rm+n : z ∈ Rn}, p ∈ M0.(2.10)

The points of M0 are fixed points of (2.6). If the real parts of the eigenvalues of
Dzg2(y, h0(y), 0) are all negative, as we assume, then M0 is asymptotically stable,
and all solutions on Fp

0 contract exponentially toward p.
If ε is positive but arbitrarily small, Fenichel’s theory [2, 11] guarantees that there

exists a function hε whose graph is a slow manifold Mε,

Mε = {(y, z) ∈ Rm+n : z = hε(y), y ∈ K}.(2.11)

This manifold is locally invariant under the system dynamics, and the dynamics
on Mε are governed by the equation

ẏ = g1(y, hε(y), ε),(2.12)

as long as y ∈ K. Fenichel’s theory also guarantees that there exists an invariant
family Fε,

Fε =
⋃

p∈Mε

Fp
ε ,(2.13)
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of fast stable fibers Fp
ε along which solutions relax to Mε. The family is invariant in

the sense that if φt denotes the time-t map associated with (2.1), then

φt(Fp
ε ) ⊂ Fφt(p)

ε , p ∈ Mε.(2.14)

The collection of fast fibers Fp
ε foliates a neighborhood of Mε. Hence, the motion of

any point on Fp
ε decomposes into a fast contracting component along the fiber and a

slow component governed by the motion of the base point of the fiber. Also, Mε is
O(ε)-close to M0, with

hε(y) = h0(y) + εh1(y) + ε2h2(y) + · · · , ε ↓ 0,(2.15)

and Fp
ε is O(ε)-close to Fp

0 in any compact neighborhood of Mε.
Remark 2.1. Typically, the manifold Mε is not unique; there is a family of slow

manifolds, all having the same asymptotic expansion (2.15) to all orders in ε but
differing by exponentially small amounts (O(e−c/ε), c > 0).

3. The CSP method. The CSP method focuses on the dynamics of the vector
field g(x) rather than on the dynamics of the vector x itself.

Writing a single differential equation like (2.1) as a system of equations amounts
to choosing a basis in the vector space. For example, in (2.2)–(2.3), the basis consists
of the ordered set of unit vectors in Rm+n. The coordinates of g relative to this basis
are εg1 and g2. If we collect the basis vectors in a matrix in the usual way, then we
can express the relation between g and its coordinates in the form

g =

(
Im 0
0 In

)(
εg1

g2

)
.(3.1)

Note that the basis chosen for this representation is the same at every point of the
phase space. The CSP method is based on a generalization of this idea, where the
basis is allowed to vary from point to point, so it can be tailored to the local dynamics
near Mε.

Suppose that we choose, instead of a fixed basis, a (point-dependent) basis A
for Rm+n. The relation between the vector field g and the vector f of its coordinates
relative to this basis is

g = Af.(3.2)

Conversely,

f = Bg,(3.3)

where B is the left inverse of A, BA = I on Rm+n. In the convention of the CSP
method, A is a matrix of column vectors (vectors in Rm+n) and B a matrix of row
vectors (functionals on Rm+n).

The CSP method focuses on the dynamics of the vector f . Along a trajectory of
the system (2.1), f satisfies the ordinary differential equation

df

dt
= Λf,(3.4)

where Λ is a linear operator [22, 34],

Λ = B(Dg)A +
dB

dt
A = B(Dg)A−B

dA

dt
= B[A, g].(3.5)
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Here, Dg is the Jacobian of g, dB/dt = (DB)g, dA/dt = (DA)g, and [A, g] is the Lie
bracket of A (taken column by column) and g. The Lie bracket of any two vectors a
and g is [a, g] = (Dg)a− (Da)g; see [23].

It is clear from (3.4) that the dynamics of f are governed by Λ, so the CSP
method focuses on the structure of Λ.

Remark 3.1. It is useful to see how Λ transforms under a change of basis. If C
is an invertible square matrix representing a coordinate transformation in Rm+n and
Â = AC and B̂ = C−1B, then

Λ̂ = B̂(Dg)Â− B̂
dÂ

dt
= C−1B(Dg)AC − C−1B

d(AC)

dt

= C−1B(Dg)AC − C−1B

(
dA

dt
C + A

dC

dt

)

= C−1ΛC − C−1 dC

dt
.(3.6)

Hence, Λ does not transform as a matrix, unless C is constant.

3.1. Decompositions. Our goal is to decompose the vector f into its fast and
slow components. Suppose, therefore, that we have a decomposition of this type,

f =
( f1

f2

)
, where f1 and f2 are of length n and m, respectively, but not necessarily

fast and slow everywhere. The decomposition suggests corresponding decompositions

of the matrices A and B, namely A = (A1, A2) and B =
(B1

B2

)
, where A1 is an

(m+n)×n matrix, A2 an (m+n)×m matrix, B1 an n× (m+n) matrix, and B2 an
m× (m + n) matrix. Then f1 = B1g and f2 = B2g.

The decompositions of A and B lead, in turn, to a decomposition of Λ,

Λ =

(
Λ11 Λ12

Λ21 Λ22

)
=

(
B1[A1, g] B1[A2, g]
B2[A1, g] B2[A2, g]

)
.(3.7)

The off-diagonal blocks Λ12 and Λ21 are, in general, not zero, so the equations govern-
ing the evolution of the coordinates f1 and f2 are coupled. Consequently, f1 and f2

cannot be identified with the fast and slow coordinates of g globally along trajectories.
The objective of the CSP method is to construct local coordinate systems (that is,
matrices A and B) that lead to a block-diagonal structure of Λ. We will see, in the
next section, that such a structure is associated with a decomposition in terms of the
slow manifold and the fast fibers.

Remark 3.2. Note that the identity BA = I on Rm+n implies four identities,
which are summarized in the matrix identity

(
B1A1 B1A2

B2A1 B2A2

)
=

(
In 0
0 Im

)
.(3.8)

3.2. Block-diagonalization of Λ. In this section we analyze the properties
of Λ relative to a fast-slow decomposition of the dynamics near Mε.

Let TpFε and TpMε denote the tangent spaces to the fast fiber and the slow
manifold, respectively, at the base point p of the fiber on Mε. (Note that dimTpFε = n
and dimTpMε = m.) These two linear spaces intersect transversally, because Mε is
normally hyperbolic and compact, so

Rm+n = TpFε ⊕ TpMε, p ∈ Mε.(3.9)
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Let Af be an (m + n) × n matrix whose columns form a basis for TpFε and As an
(m + n) × m matrix whose columns form a basis for TpMε, and let A = (Af , As).
(We omit the subscript p.) Then A is a (point-dependent) basis for Rm+n that
respects the decomposition (3.9). We recall that T Mε ≡

⋃
p∈Mε

(p, TpMε) and
T Fε ≡

⋃
p∈Mε

(p, TpFε) are the tangent bundles of the slow manifold and the family
of the fast fibers, respectively. (A general treatment of tangent bundles of manifolds
is given in [1, section 1.7].)

The decomposition (3.9) induces a dual decomposition,

Rm+n = NpMε ⊕NpFε, p ∈ Mε,(3.10)

where NpMε and NpFε are the duals of TpMε and TpFε, respectively, in Rm+n.
(Note that dimNpMε = n and dimNpFε = m.) The corresponding decomposition

of B is B =
(Bs⊥

Bf⊥

)
, where the rows of Bs⊥ form a basis for NpMε and the rows of

Bf⊥ a basis for NpFε. Furthermore,
(

Bs⊥Af Bs⊥As

Bf⊥Af Bf⊥As

)
=

(
In 0
0 Im

)
.(3.11)

The decompositions of A and B lead, in turn, to a decomposition of Λ,

Λ =

(
Bs⊥[Af , g] Bs⊥[As, g]
Bf⊥[Af , g] Bf⊥[As, g]

)
.(3.12)

This decomposition is similar to, but different from, the decomposition (3.7). The
following lemma shows that its off-diagonal blocks are zero.

Lemma 3.1. The off-diagonal blocks in the representation (3.12) of Λ are zero at
each point p ∈ Mε.

Proof. Since Bs⊥As = 0 on Mε and Mε is invariant, we have

d

dt

(
Bs⊥As

)
= D(Bs⊥As)g = (DBs⊥)(g,As) + Bs⊥((DAs)g) = 0.(3.13)

(DBs⊥ is a symmetric bilinear form; its action on a matrix must be understood as
columnwise action.)

Also, g ∈ T Mε, so Bs⊥g = 0 on Mε. Hence, the directional derivative along As

(taken column by column) at points on Mε also vanishes,

D(Bs⊥g)As = (DBs⊥)(As, g) + Bs⊥(Dg)As = 0.(3.14)

Subtracting (3.13) from (3.14), we obtain the identity

Bs⊥[As, g] = Bs⊥ ((Dg)As − (DAs)g) = 0.(3.15)

The proof for the lower-left block is more involved, since the fast fibers are in-
variant as a family. Assume that the fiber Fp

ε at p ∈ Mε is given implicitly by the
equation F (q; p) = 0, q ∈ Fp

ε . Then the rows of (DqF )(q; p) form a basis for NqFε,
so there exists an invertible matrix C such that Bf⊥ = C(DqF ).

Since the rows of (DqF )(q; p) span NqFε, we have (DqF )(q; p)Af (q) = 0. This
identity holds, in particular, along solutions of (2.1), so

d

dt
((DqF )(q; p)Af (q)) =

(
(D2

qF )(q; p)
)
(g(q), Af (q))

+ ((DpqF )(q; p)) (g(p), Af (q))

+ ((DqF )(q; p)) (DAf (q)) g(q)

= 0.(3.16)
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The family of the fast fibers is invariant under the flow associated with (2.1), so if
F (q; p) = 0, then also F (q(t); p(t)) = 0 and, hence,

dF (q; p)

dt
= ((DqF )(q; p)) g(q) + ((DpF )(q; p)) g(p) = 0.(3.17)

Next, we take the directional derivative of both members of this equation along Af ,
keeping in mind that (Dg)(p)Af (q) = 0 because the base point p does not vary
along Af . (Recall that the columns of Af (q) span TqFε.) We find that

(
(D2

qF )(q; p)
)
(Af (q), g(q)) + ((DqF )(q; p)) (Dg(q))Af (q)

+ ((DpqF )(q; p)) (Af (q), g(p)) = 0.(3.18)

But the bilinear forms D2
qF and DpqF are symmetric, so subtracting (3.16) from

(3.18) and letting q = p, we obtain the identity

(DqF )(p; p) ((Dg)Af − (DAf )g) (p) = 0.(3.19)

Hence, Bf⊥[Af , g](p) = C(DqF )(p; p)[Af , g](p) = 0, and the proof of the lemma is
complete.

The lemma implies that the representation (3.12) is block-diagonal,

Λ =

(
Bs⊥[Af , g] 0

0 Bf⊥[As, g]

)
.(3.20)

Consequently, the decomposition (3.9) reduces Λ. In summary, if we can construct
bases Af and As, then we will have achieved a representation of Λ where the fast and
slow components remain separated at all times and the designation of fast and slow
takes on a global meaning.

3.3. The CSP algorithm. The CSP method is a constructive algorithm to
approximate Af and As. One typically initializes the algorithm with a constant
matrix A(0),

A(0) =
(
A(0)

1 , A(0)
2

)
=

(
A(0)

11 A(0)
12

A(0)
21 A(0)

22

)
.(3.21)

Here, A(0)
11 is an m × n matrix, A(0)

22 is an n ×m matrix, and the off-diagonal blocks

A(0)
12 and A(0)

21 are full-rank square matrices of order m and n, respectively. A common

choice is A(0)
11 = 0. We follow this convention and assume, henceforth, that A(0)

11 = 0,

A(0) =
(
A(0)

1 , A(0)
2

)
=

(
0 A(0)

12

A(0)
21 A(0)

22

)
.(3.22)

(Other choices are discussed in Remark 3.6 below.) The left inverse of A(0) is

B(0) =

(
B1

(0)

B2
(0)

)
=

(
B11

(0) B12
(0)

B21
(0) 0

)

=

(
−(A(0)

21 )−1A(0)
22 (A(0)

12 )−1 (A(0)
21 )−1

(A(0)
12 )−1 0

)
.(3.23)
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The algorithm proceeds iteratively. For q = 0, 1, . . . , one first defines the operator
Λ(q) in accordance with (3.5),

Λ(q) = B(q)(Dg)A(q) −B(q)
dA(q)

dt
=

(
Λ11

(q) Λ12
(q)

Λ21
(q) Λ22

(q)

)
,(3.24)

and matrices U(q) and L(q),

U(q) =

(
0 (Λ11

(q))
−1Λ12

(q)

0 0

)
, L(q) =

(
0 0

Λ21
(q)(Λ

11
(q))

−1 0

)
.(3.25)

Then one updates A(q) and B(q) according to the formulas

A(q+1) = A(q)(I − U(q))(I + L(q)),(3.26)

B(q+1) = (I − L(q))(I + U(q))B(q)(3.27)

and returns to (3.24) for the next iteration.
Remark 3.3. Lam [13] and Lam and Goussis [16] perform the update (3.26)–

(3.27) in two steps. The first step corresponds to the postmultiplication of A(q)

with I − U(q) and premultiplication of B(q) with I + U(q) and the second step to the

subsequent postmultiplication of A(q)(I−U(q)) with I +L(q) and premultiplication of
(I + U(q))B(q) with I − L(q). The nonzero entries of U(q) and L(q) are chosen so that
Λ is block-diagonalized to successively higher orders in ε.

Remark 3.4. In the special case of a linear vector field g(x), the block-
diagonalization is commonly referred to as the power method.

3.4. Approximation of the slow manifold. After q iterations, the CSP con-
dition

B1
(q)g = 0, q = 0, 1, . . . ,(3.28)

identifies those points where the fast amplitudes vanish with respect to the then
current basis. These points define a manifold that is an approximation for the slow
manifold Mε.

For q = 0, B1
(0) is constant and given by (3.23). Hence, the CSP condition (3.28)

reduces to the constraint g2(y, z, ε) = 0. In general, this constraint is satisfied by a

function z = ψ(0)(y, ε). The graph of this function defines K(0)
ε , the CSP manifold

(CSPM) of order zero. Since the constraint reduces at leading order to the equation

g2(y, z, 0) = 0, which is satisfied by the function z = h0(y), K(0)
ε may be chosen to

coincide with M0 to leading order; see (2.9).
For q = 1, 2, . . . , the CSP condition takes the form

B1
(q)(y,ψ(q−1)(y, ε), ε)g(y, z, ε) = 0, q = 1, 2, . . . .(3.29)

The condition is satisfied by a function z = ψ(q)(y, ε), and the manifold

K(q)
ε = {(y, z) : z = ψ(q)(y, ε), y ∈ K}, q = 0, 1, . . . ,(3.30)

defines the CSPM of order q, which is an approximation of Mε. The following theorem
regarding the quality of the approximation was proven in [34].
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Theorem 3.1 ([34, Theorem 3.1]). The asymptotic expansions of the CSPM

K(q)
ε and the slow manifold Mε agree up to and including terms of O(εq),

ψ(q)(· , ε) =
q∑

j=0

εjhj + O(εq+1), ε ↓ 0, q = 0, 1, . . . .(3.31)

3.5. Approximation of the fast fibers. We now turn our attention to the
fast fibers. The columns of Af (y, hε(y)) span the tangent space to the fast fiber with

base point p = (y, hε(y)), so we expect that A(q)
1 defines an approximation for the

same space after q applications of the CSP algorithm. We denote this approximation

by L(q)
ε (y) and refer to it as the CSP fiber (CSPF) of order q at p,

L(q)
ε (y) = span (cols (A(q)

1 (y,ψ(q)(y, ε), ε))).(3.32)

We will shortly estimate the asymptotic accuracy of the approximation, but before
doing so we need to make an important observation.

Each application of the CSP algorithm involves two steps; see Remark 3.3. The
first step involves U and serves to push the upper-right block of Λ up by one order of ε,
and the second step involves L and serves the same purpose for the lower-left block.
The two steps are consecutive. At the first step of the qth iteration, one evaluates

B1
(q) on K(q−1)

ε to find K(q)
ε by solving the CSP condition (3.28) for the function ψ(q).

One then uses this expression in the second step to update A and B, thus effectively

evaluating A(q)
1 on K(q)

ε rather than on K(q−1)
ε .

The following theorem contains our main result.

Theorem 3.2. The asymptotic expansions of L(q)
ε (y) and TpFε, where p =

(y, hε(y)) ∈ Mε, agree up to and including terms of O(εq) for all y ∈ K and for
q = 0, 1, . . . .

Theorem 3.2 implies that the family L(q)
ε ≡

⋃
p∈Mε

(p,L(q)
ε (y)) is an O(εq)-

approximation to the tangent bundle T Fε.
The proof of Theorem 3.2 is given in section 4. The essential idea is to show that,

at each iteration, the asymptotic order of the off-diagonal blocks of Λ(q) increases by

one and A(q)
1 and B2

(q) become fast and fast⊥, respectively, to one higher order. As a

consequence, in the limit as q → ∞, Λ(q) → Λ, A(q) → A, and B(q) → B, where Λ,
A, and B are ideal in the sense described in section 3.2.

Remark 3.5. If, in the second step of the CSP algorithm, A(q)
1 were evaluated on

K(q−1)
ε instead of on K(q)

ε , the approximation of T Fε would still be O(εq)-accurate.
In section 5 we demonstrate this by means of an example; in Appendix B, we state
the idea of the proof for the general case.

Remark 3.6. The statement of Theorem 3.2 as given above is tailored to suit
our choice of an initial basis A(0); see (3.22). Other choices have also been consid-
ered for systems in which there is not an explicit small parameter. Hadjinicolaou and
Goussis [10] use an arbitrary basis, while Lam and Goussis [15] and Massias and Gous-
sis [21] use the eigenvectors of the Jacobian. These other choices of A(0) introduce
modifications only in the degree to which the CSPM and the CSPFs of order q ap-
proximate Mε and T Fε, respectively, and, for any choice of A(0), statements similar
to those of Theorems 3.1 and 3.2 can be shown to be true.

4. Proof of Theorem 3.2. The proof of Theorem 3.2 is by induction on q.
Section 4.1 contains an auxiliary lemma that shows that each successive application of



FAST AND SLOW DYNAMICS FOR THE CSP METHOD 623

the CSP algorithm pushes Λ closer to block-diagonal form. The induction hypothesis
is formulated in section 4.2, the hypothesis is shown to be true for q = 0 in section 4.3,
and the induction step is taken in section 4.4.

4.1. Asymptotic estimates of Λ. As stated in section 3, the goal of the CSP
method is to reduce Λ to block-diagonal form. This goal is approached by the repeated
application of a two-step algorithm. As shown in [34], the first step of the algorithm
is engineered so that each application increases the asymptotic accuracy of the upper-

right block Λ12
(q) by one order of ε; in particular, Λ12

(q) = O(εq) on K(q)
ε [34, eq. (5.25)].

We now complete the picture and show that each application of the second step
increases the asymptotic accuracy of the lower-left block Λ21

(q) by one order of ε when
the information obtained in the first step of the same iteration is used. In particular,

Λ21
(q) = O(εq+1) on K(q+1)

ε , where K(q+1)
ε has been obtained in the first step of the

(q + 1)th refinement.
Lemma 4.1. For q = 0, 1, . . . ,

Λ(q) =

(
Λ11

(0,0) + O(ε) εqΛ12
(q,q)

εq+1Λ21
(q,q+1) εΛ22

(1,1) + O(ε2)

)
,(4.1)

when Λ(q) is evaluated on K(q+1)
ε .

Proof. The proof is by induction. The desired estimates of Λ11
(q), Λ

12
(q), and Λ22

(q) on

K(q)
ε were established in [34, eqs. (5.24), (5.25), (5.27)]. Since the asymptotic expan-

sions of K(q+1)
ε and K(q)

ε differ only at terms of O(εq+1) or higher [34, Theorem 3.1],

these estimates of Λ11
(q), Λ

12
(q), and Λ22

(q) are true also on K(q+1)
ε . It remains only to

estimate Λ21
(q).

Consider the case q = 0. Let Λ21
(0,j) be the coefficient of εj in the asymptotic

expansion of Λ21
(0)(y,ψ(1)(y), ε). The estimate Λ21

(0) = O(ε) on K(1)
ε follows if we can

show that Λ21
(0,0) = 0. It is already stated in [34, eq. (4.30)] that Λ21

(0,0) = 0 on K(0)
ε .

Furthermore, [34, Theorem 3.1] implies that the asymptotic expansions of ψ(1) and
ψ(0) agree to leading order. Thus, the asymptotic expansions of Λ21

(0)(y,ψ(0)(y), ε) and

Λ21
(0)(y,ψ(1)(y), ε) also agree to leading order, and the result follows.

Now, assume that the estimate holds for 0, 1, . . . , q. From (3.6) we obtain

Λ21
(q+1) = Λ21

(q) − L(q)Λ
11
(q) + Λ22

(q)L(q) − L(q)Λ
12
(q)L(q) − Λ21

(q)U(q)L(q)

− L(q)U(q)Λ
21
(q) + L(q)Λ

11
(q)U(q)L(q) − L(q)U(q)Λ

22
(q)L(q)

+ L(q)U(q)Λ
21
(q)U(q)L(q) +

(
DL(q)

)
g + L(q)

((
DU(q)

)
g
)
L(q).(4.2)

The first two terms in the right member sum to zero by virtue of the definition (3.25)
of L(q). The next seven terms are all O(εq+2) or higher by virtue of the induction
hypothesis. Finally, the last two terms are also O(εq+2) or higher by the induction
hypothesis and [34, Lemma A.2].

4.2. The induction hypothesis. The CSPF of order q, L(q)
ε (y), is defined

in (3.32) to be the linear space spanned by the columns of the fast component,

A(q)
1 (y,ψ(q), ε), of the basis A(q). Thus, to prove Theorem 3.2, it suffices to show

that the asymptotic expansions of A(q)
1 (y,ψ(q), ε) and the space tangent to the fast

fiber, TpFε, agree up to and including terms of O(εq) for p = (y, hε(y)) and for
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q = 0, 1, . . . . The central idea of the proof is to show that each successive application

of the CSP method pushes the projection of A(q)
1 on T Mε along T Fε to one higher

order in ε.
We express A(q), generated after q applications of the CSP algorithm, in terms of

the basis A,

A(q)(y, z, ε) = A(y, hε, ε)Q
(q)(y, z, ε), q = 0, 1, . . . .(4.3)

Since B(q) and B are the left inverses of A(q) and A, respectively, we also have

B(q)(y, z, ε) = R(q)(y, z, ε)B(y, hε, ε), q = 0, 1, . . . ,(4.4)

where R(q) ≡ (Q(q))−1. Introducing the block structure of Q(q) and R(q),

Q(q) =

(
Q(q)

1f Q(q)
2f

Q(q)
1s Q(q)

2s

)
, R(q) =

(
R1s⊥

(q) R1f⊥
(q)

R2s⊥
(q) R2f⊥

(q)

)
,(4.5)

we rewrite (4.3) and (4.4) as

A(q)
1 = AfQ

(q)
1f + AsQ

(q)
1s , A(q)

2 = AfQ
(q)
2f + AsQ

(q)
2s(4.6)

and

B1
(q) = R1s⊥

(q) Bs⊥ + R1f⊥
(q) Bf⊥, B2

(q) = R2s⊥
(q) Bs⊥ + R2f⊥

(q) Bf⊥(4.7)

for q = 0, 1, . . . .

Equation (4.7) shows that AsQ
(q)
1s is the projection of A(q)

1 on T Mε. Thus, to

establish Theorem 3.2, we need only to prove the asymptotic estimate Q(q)
1s = O(εq+1).

The proof is by induction on q, where the induction hypothesis is

Q(q)(· ,ψ(q), ε) =

(
O(1) O(εq)

O(εq+1) O(1)

)
,(4.8)

R(q)(· ,ψ(q), ε) =

(
O(1) O(εq)

O(εq+1) O(1)

)
, q = 0, 1, . . . .(4.9)

Remark 4.1. Although the estimate of Q(q)
1s is sufficient to establish Theorem 3.2,

we provide the estimates of all the blocks in (4.8)–(4.9) because they will be required
in the induction step.

The validity of (4.8)–(4.9) for q = 0 is shown in section 4.3. The induction step
is carried out in section 4.4.

4.3. Proof of Theorem 3.2 for q = 0. We fix q = 0 and verify the induction
hypothesis for Q(0) and R(0). By (4.3)

Q(0) = BA(0),(4.10)

whence

Q(0) =

(
Bs⊥A(0)

1 Bs⊥A(0)
2

Bf⊥A(0)
1 Bf⊥A(0)

2

)
.(4.11)
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It suffices to show that the lower-left block is zero to leading order, since the other

blocks are all O(1). We do this by showing that Q(0,0)
1s = 0. By (4.11),

Q(0,0)
1s = Bf⊥

0 A(0,0)
1 .(4.12)

Bf⊥
0 spans NpF0 for every p ∈ K(0)

ε . Also, z is constant on NpF0, so Bf⊥
0 = (B1f⊥, 0),

where B1f⊥ is a full-rank matrix of size m. Last, A(0,0)
1 = A(0)

1 =
( 0
A(0)

21

)
by

(3.22). Substituting these expressions for Bf⊥
0 and A(0,0)

1 into (4.12), we obtain that

Q(0,0)
1s = 0.

The induction hypothesis on R(0) can be verified either by a similar argument or

by recalling that R(0) = (Q(0))−1, where Q(0) was shown above to be block-triangular
to leading order.

4.4. Proof of Theorem 3.2 for q = 1, 2, . . . . We assume that the induction
hypothesis (4.8)–(4.9) holds for 0, 1, . . . , q and show that it holds for q + 1. The
proof proceeds in four steps. In Step 1, we derive explicit expressions for R(q+1)

and Q(q+1) in terms of R(q) and Q(q); these expressions also involve U(q) and L(q). In
Step 2, we derive the leading-order asymptotics of U(q) and in Step 3 the leading-order
asymptotics of L(q). Then, in Step 4, we substitute these results into the expressions
derived in Step 1 to complete the induction.

Step 1. We derive the expressions for Q(q+1) and R(q+1). Equations (4.3) and

(4.4), together with the update formulas (3.26) for A(q) and (3.27) for B(q), yield

Q(q+1) = Q(q)(I − U(q))(I + L(q)),(4.13)

R(q+1) = (I − L(q))(I + U(q))R(q).(4.14)

In terms of the constituent blocks, we have

Q(q+1)
1f = Q(q)

1f + Q(q)
2f L(q) −Q(q)

1f U(q)L(q),(4.15)

Q(q+1)
2f = Q(q)

2f −Q(q)
1f U(q),(4.16)

Q(q+1)
1s = Q(q)

1s + Q(q)
2s L(q) −Q(q)

1s U(q)L(q),(4.17)

Q(q+1)
2s = Q(q)

2s −Q(q)
1s U(q)(4.18)

and

R1s⊥
(q+1) = R1s⊥

(q) + U(q)R
2s⊥
(q) ,(4.19)

R1f⊥
(q+1) = R1f⊥

(q) + U(q)R
2f⊥
(q) ,(4.20)

R2s⊥
(q+1) = R2s⊥

(q) − L(q)R
1s⊥
(q) − L(q)U(q)R

2s⊥
(q) ,(4.21)

R2f⊥
(q+1) = R2f⊥

(q) − L(q)R
1f⊥
(q) − L(q)U(q)R

2f⊥
(q) .(4.22)

Step 2. We derive the leading-order asymptotics of the matrix U(q).
Recall that U(q) = (Λ11

(q))
−1Λ12

(q). Moreover, Λ11
(q) is strictly O(1) and Λ12

(q) is strictly

O(εq) by Lemma 4.1. Hence, U(q) = U(q,q)ε
q+O(εq+1), with U(q,q) = (Λ11

(q,0))
−1Λ12

(q,q).
Therefore, it suffices to derive the leading-order asymptotics of these blocks of Λ.

By definition, Λ(q) = B(q)[A
(q), g]. Therefore,

Λ(q) =

(
B1

(q)[A
(q)
1 , g] B1

(q)[A
(q)
2 , g]

B2
(q)[A

(q)
1 , g] B2

(q)[A
(q)
2 , g]

)
.(4.23)
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The individual blocks of Λ(q) are obtained by substituting (4.6) and (4.7) into (4.23).
We observe that one-half of all the terms would vanish, were they to be evaluated

on Mε, by virtue of Lemma 3.1. Since they are evaluated on K(q+1)
ε , instead, which is

O(εq+1)-close to Mε, these terms are O(εq+2) and therefore of higher order for each
of the blocks; recall Lemma 4.1. Thus,

Λ11
(q) = R1s⊥

(q) Bs⊥[AfQ
(q)
1f , g] + R1f⊥

(q) Bf⊥[AsQ
(q)
1s , g],(4.24)

Λ12
(q) = R1s⊥

(q) Bs⊥[AfQ
(q)
2f , g] + R1f⊥

(q) Bf⊥[AsQ
(q)
2s , g],(4.25)

Λ21
(q) = R2s⊥

(q) Bs⊥[AfQ
(q)
1f , g] + R2f⊥

(q) Bf⊥[AsQ
(q)
1s , g],(4.26)

where the remainders of O(εq+2) have been omitted for brevity. Recalling the defini-
tion of the Lie bracket, we rewrite (4.24) as

Λ11
(q) = R1s⊥

(q) Bs⊥
(

(Dg)AfQ
(q)
1f − d

dt

(
AfQ

(q)
1f

))

+ R1f⊥
(q) Bf⊥

(
(Dg)AsQ

(q)
1s − d

dt

(
AsQ

(q)
1s

))
,(4.27)

where we recall that all of the quantities are evaluated at (y,ψ(q+1), ε). Next, (Dg)As

and the two time derivatives in (4.27) are zero to leading order by Lemma A.1 and
[34, Lemma A.2], respectively. Therefore, to leading order (4.27) becomes

Λ11
(q,0) = R1s⊥

(q,0)B
s⊥
0 (Dg)0A

0
fQ

(q,0)
1f .(4.28)

Here, Λ11
(q,0) stands for the leading-order term in the asymptotic expansion of

Λ11
(q)(y,ψ(q+1)(y), ε), and the right member is the leading order term in the asymptotic

expansion of (R1s⊥
(q) Bs⊥(Dg)AfQ

(q)
1f )(y, hε(y), ε).

We derive a similar formula for Λ12
(q,q). First, we rewrite (4.25) as

Λ12
(q) = R1s⊥

(q) Bs⊥
(

(Dg)AfQ
(q)
2f − d

dt

(
AfQ

(q)
2f

))

+ R1f⊥
(q) Bf⊥

(
(Dg)AsQ

(q)
2s − d

dt

(
AsQ

(q)
2s

))
.(4.29)

Next, Q(q)
2f = O(εq), Q(q)

2s = O(1), R1s⊥
(q) = O(1), and R1f⊥

(q) = O(εq) by the induction

hypothesis (4.8)–(4.9). Thus, [34, Lemma A.2] implies that the two terms in (4.29)
involving time derivatives are O(εq+1) and therefore of higher order. Also, (Dg)As is
zero to leading order by Lemma A.1, and thus

Λ12
(q,q) = R1s⊥

(q,0)B
s⊥
0 (Dg)0A

0
fQ

(q,q)
2f .(4.30)

We now substitute Λ11
(q,0) and Λ12

(q,q) from (4.28) and (4.30) in the expression

U(q,q) = (Λ11
(q,0))

−1Λ12
(q,q) to find the desired expression for U(q,q) in terms of Q(q),

U(q,q) =
(
Q(q,0)

1f

)−1
Q(q,q)

2f .(4.31)
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We also need an expression for U(q,q) in terms of blocks of R(q), which we will
use in (4.19)–(4.22). Since R(q) has the near block-diagonal structure given by the

induction hypothesis (4.8)–(4.9) and Q(q) is its inverse, we find that

Q(q) =

(
(R1s⊥

(q,0))
−1 −εq(R1s⊥

(q,0))
−1R1f⊥

(q,q)(R
2f⊥
(q,0))

−1

−εq+1(R2f⊥
(q,0))

−1R2s⊥
(q,q+1)(R

1s⊥
(q,0))

−1 (R2f⊥
(q,0))

−1

)

(4.32)
to leading order for each of the blocks and for q = 1, 2, . . . . Equations (4.31) and
(4.32) lead to the desired expression for U(q,q) in terms of R(q),

U(q,q) = −R1f⊥
(q,q)

(
R2f⊥

(q,0)

)−1
.(4.33)

Step 3. We derive the leading-order asymptotics of the matrix L(q).
Recall that L(q) = Λ21

(q)(Λ
11
(q))

−1. Moreover, by Lemma 4.1, Λ11
(q) is strictly O(1)

and Λ21
(q) is strictly O(εq+1). Hence, L(q) = L(q,q+1)ε

q+1 + O(εq+2), with L(q,q+1) =

Λ21
(q,q+1)(Λ

11
(q,0))

−1. An expression for Λ11
(q,0) was derived in (4.28), so here we focus on

Λ21
(q,q+1).

Equation (4.26) and the definition of the Lie bracket imply that

Λ21
(q) = R2s⊥

(q) Bs⊥
(

(Dg)AfQ
(q)
1f − d

dt

(
AfQ

(q)
1f

))

+ R2f⊥
(q) Bf⊥

(
(Dg)AsQ

(q)
1s − d

dt

(
AsQ

(q)
1s

))
.(4.34)

Next, Q(q)
1f = O(1), Q(q)

1s = O(εq+1), R2s⊥
(q) = O(εq+1), and R2f⊥

(q) = O(1) by the

induction hypothesis. Also, the time derivatives are O(ε) by [34, Lemma A.2], and
thus the two terms in (4.34) that involve time derivatives are O(εq+2). Last, (Dg)As =
O(ε) by Lemma A.1. Thus, we find that

Λ21
(q,q+1) = R2s⊥

(q,q+1)B
s⊥
0 (Dg)0A

0
fQ

(q,0)
1f .(4.35)

Equations (4.28) and (4.35) yield the desired formula for L(q,q+1) in terms of the
blocks of R(q),

L(q,q+1) = Λ21
(q,q+1)

(
Λ11

(q,0)

)−1
= R2s⊥

(q,q+1)

(
R1s⊥

(q,0)

)−1
.(4.36)

Next, we recast (4.36) in terms of blocks of Q(q) in order to use it in (4.15)–(4.18).
The matrix R(q) is the inverse of Q(q) and has the near block-diagonal form given in
(4.9). Thus,

R(q) =

(
(Q(q,0)

1f )−1 −εq(Q(q,0)
1f )−1Q(q,q)

2f (Q(q,0)
2s )−1

−εq+1(Q(q,0)
2s )−1Q(q,q+1)

1s (Q(q,0)
1f )−1 (Q(q,0)

2s )−1

)

(4.37)
to leading order for each block and for q = 1, 2, . . . . Equations (4.36) and (4.37) lead
to the desired expression for L(q,q+1) in terms of the blocks of Q(q),

L(q,q+1) = −
(
Q(q,0)

2s

)−1
Q(q,q+1)

1s .(4.38)
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Step 4. We substitute the results obtained in Steps 2 and 3 into the formulas
(4.15)–(4.22) derived in Step 1.

Equations (4.15) and (4.18), together with the induction hypothesis and the esti-

mates U(q) = O(εq) and L(q) = O(εq+1), imply that Q(q+1)
1f and Q(q+1)

2s remain O(1).
This concludes the estimation of these blocks.

Next, we show that Q(q+1)
2f = O(εq+1). First, Q(q+1)

2f and Q(q)
2f are equal up to and

including terms of O(εq−1) by (4.16) and the estimate on U(q). Thus, Q(q+1,i)
2f = 0

for i = 0, 1, . . . , q − 1 by the induction hypothesis on Q(q)
2f . It suffices to show that

Q(q+1,q)
2f = 0. Equation (4.16) implies that

Q(q+1,q)
2f = Q(q,q)

2f −Q(q,0)
1f U(q,q).(4.39)

The right member of this equation is zero by (4.31), and the estimation of Q(q+1)
2f is

complete.

Finally, we show that Q(q+1)
1s = O(εq+2) to complete the estimates on the blocks

of Q(q+1). First, Q(q+1)
1s and Q(q)

1s are equal up to and including terms of O(εq) by

(4.17) and the order estimates on U(q) and L(q). Thus, Q(q+1,i)
1s = 0 for i = 0, 1, . . . , q

by the induction hypothesis on Q(q)
1s . It suffices to show that Q(q+1,q+1)

1s = 0. Equation
(4.17) implies that

Q(q+1,q+1)
1s = Q(q,q+1)

1s + Q(q,0)
2s L(q,q+1),(4.40)

where the right member of this equation is zero by (4.38). The estimation of Q(q+1)
1s

is complete.
The blocks of R(q) may be estimated in an entirely similar manner, using (4.19)–

(4.22) instead of (4.15)–(4.18) and (4.33) and (4.36) instead of (4.31) and (4.38). The
proof of Theorem 3.2 is complete.

5. The Michaelis–Menten–Henri model. In this section, we illustrate Theo-
rem 3.2 by applying the CSP method to the Michaelis–Menten–Henri (MMH) mecha-
nism of enzyme kinetics [24, 25]. We consider the planar system of ordinary differential
equations for a slow variable s and a fast variable c,

s′ = ε(−s + (s + κ − λ)c),(5.1)

c′ = s− (s + κ)c.(5.2)

The parameters satisfy the inequalities 0 < ε * 1 and κ >λ> 0. Only nonnegative
values of s and c are relevant. The system of equations (5.1)–(5.2) is of the form
(2.2)–(2.3) with m = 1, n = 1, y = s, z = c, g1 = −s+(s+κ−λ)c, and g2 = s−(s+κ)c.

5.1. Slow manifolds and fast fibers. In the limit as ε ↓ 0, the dynamics of
the MMH equations are confined to the reduced slow manifold,

M0 =

{
(c, s) : c =

s

s + κ
, s ≥ 0

}
.(5.3)

The manifold M0 is asymptotically stable, so there exists a locally invariant slow
manifold Mε for all sufficiently small ε that is O(ε) close to M0 on any compact set.
Moreover, Mε is the graph of a function hε,

Mε = {(c, s) : c = hε(s), s ≥ 0},(5.4)
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and hε admits an asymptotic expansion, hε = h0 + εh1 + ε2h2 + · · · . The coefficients
are found from the invariance equation,

s− (s + κ)hε(s) = εh′
ε(s)(−s + (s + κ − λ)hε(s)).(5.5)

The first few coefficients are

h0(s) =
s

s + κ
, h1(s) =

κλs

(s + κ)4
, h2(s) =

κλs(2κλ − 3λs− κs− κ2)

(s + κ)7
.(5.6)

In the limit as ε ↓ 0, each line of constant s is trivially invariant under (5.1)–(5.2).
These are the (one-dimensional) fast fibers Fp

0 with base point p = (s, h0(s)) ∈ M0.
All points on Fp

0 contract exponentially fast to p with rate constant −(s+κ). The fast
fiber Fp

0 perturbs to a curve Fp
ε that is O(ε)-close to Fp

0 in any compact neighborhood
of Mε. The fast fibers Fp

ε , p ∈ Mε, form an invariant family.

5.2. Asymptotic expansions of the fast fibers. To derive asymptotic infor-
mation about the fast fibers, we look for general solutions of (5.1)–(5.2) that are given
by asymptotic expansions,

s(t; ε) =
∑

i=0

εisi(t), c(t; ε) =
∑

i=0

εici(t),(5.7)

where the coefficients si and ci are determined order by order.
Consider the fast fiber Fp

ε with base point p = (s, hε(s)), and let (sA, cA) and
(sB , cB) be two points on it; let ∆s(t) = sB(t)−sA(t) and ∆c(t) = cB(t)−cA(t). The
distance between any two points on the same fast fiber will contract exponentially fast
towards zero at the O(1) rate, as long as both points are chosen in a neighborhood
of Mε. We may write

∆s(t; ε) =
∑

i=0

εi∆si(t), ∆c(t; ε) =
∑

i=0

εi∆ci(t),(5.8)

where ∆si(t) = sBi (t) − sAi (t) and ∆ci(t) = cBi (t) − cAi (t). The condition on fast
exponential decay of ∆s(t) and ∆c(t) translates into

∆si(t) = O(e−Cst), ∆ci(t) = O(e−Cct), t → ∞,(5.9)

for some positive constants Cs and Cc. We let (sA, cA) and (sB , cB) be infinitesimally
close, since we are interested in vectors tangent to the fast fiber.

5.2.1. O(1) fast fibers. Substituting the expansions (5.7) into (5.1)–(5.2) and
equating O(1) terms, we find

s′0 = 0,(5.10)

c′0 = s0 − (s0 + κ)c0.(5.11)

The equations can be integrated,

s0(t) = s0(0) = s0,(5.12)

c0(t) =
s0

s0 + κ
+

(
c0(0) − s0

s0 + κ

)
e−(s0+κ)t.(5.13)
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Hence,

∆s0(t) = ∆s0(0),(5.14)

∆c0(t) = ∆c0(0)e−(s0+κ)t + (∂s0c0(t))∆s0(0) + O((∆s0(0))2).(5.15)

The points A and B lie on the same fiber if and only if

∆s0(0) = 0.(5.16)

Thus, (5.15) simplifies to

∆c0(t) = ∆c0(0)e−(s0+κ)t,(5.17)

and ∆c0(t) decays exponentially towards zero, irrespective of the choice of ∆c0(0).
Hence, ∆c0(0) is a free parameter.

We conclude that, to O(1), any vector
( 0
α

)
with α constant (α ,= 0) is tangent to

every fast fiber at the base point.

5.2.2. O(ε) fast fibers. At O(ε), we obtain the equations

s′1 = −s0 + (s0 + κ − λ)c0,(5.18)

c′1 = s1 − (s0 + κ)c1 − s1c0.(5.19)

Using (5.12) and (5.13), we integrate (5.18) to obtain

s1(t) = s1(0) − λs0

s0 + κ
t +

s0 + κ − λ

s0 + κ

(
c0(0) − s0

s0 + κ

)
(1 − e−(s0+κ)t).(5.20)

Therefore, at O(ε),

∆s1(t) = ∆s1(0) +
s0 + κ − λ

s0 + κ
∆c0(0)(1 − e−(s0+κ)t).(5.21)

For the two points to have the same phase asymptotically, it is necessary that
limt→∞∆s1(t) = 0. This condition is satisfied if and only if

∆s1(0) = −s0 + κ − λ

s0 + κ
∆c0(0).(5.22)

Next, c1(t) follows upon integration of (5.19),

c1(t) = c1(0)e−(s0+κ)t

+
κ

(s0 + κ)2

(
s1(0) +

s0 + κ − λ

s0 + κ

(
c0(0) − s0

s0 + κ

))
(1 − e−(s0+κ)t)

−
(
c0(0) − s0

s0 + κ

)(
s1(0) +

s0 + κ − λ

s0 + κ

(
c0(0) +

κ − s0

s0 + κ

))
te−(s0+κ)t

− s0 + κ − λ

(s0 + κ)2

(
c0(0) − s0

s0 + κ

)2

(e−2(s0+κ)t − e−(s0+κ)t)

+
λs0

2(s0 + κ)

(
c0(0) − s0

s0 + κ

)
t2e−(s0+κ)t

− κλs0

(s0 + κ)4
(e−(s0+κ)t + (s0 + κ)t− 1).(5.23)
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We infer from this expression that limt→∞∆c1(t) = 0, as long as (5.22) and (5.16)
hold. Hence, ∆c1(0) is a free parameter, just like ∆c0(0), and the only condition that
arises at O(ε) is (5.22) on ∆s1(0).

We conclude that any vector

(
0
α

)
+ ε

(
−
(
1 − λ

s0+κ

)
α

β

)
,(5.24)

with α and β constant (α ,= 0), is tangent to every fast fiber at the base point up to
and including terms of O(ε). Any such vector may be written as the product of a free
parameter and a constant vector (fixed by s0),

(α + εβ)

(
−ε

(
1 − λ

s0+κ

)

1

)
+ O(ε2).(5.25)

5.2.3. O(ε2) fast fibers. At O(ε2), we obtain the equation

s′2 = s1(c0 − 1) + (s0 + κ − λ)c1.(5.26)

Direct integration yields

s2(t) = s2(0) +

[
λ

(s0 + κ)2

(
c0(0) − s0

s0 + κ

)
− κ(s0 + κ − λ)

(s0 + κ)3

]
s1(0)

−
[
κ(s0 + κ − λ)(s0 + κ − 2λ) + λ2s0

(s0 + κ)4

](
c0(0) − s0

s0 + κ

)

+
λ(s0 + κ − λ)

2(s0 + κ)3

(
c0(0) − s0

s0 + κ

)2

+

(
1 − λ

s0 + κ

)(
c1(0) − κλs0

(s0 + κ)4

)

− κλ

(s0 + κ)2

[
s1(0) +

s0 + κ − λ

s0 + κ

(
c0(0) − 2s0

s0 + κ

)]
t

+
κλ2s0

2(s0 + κ)3
t2 + R(t),(5.27)

where the remainder R(t) involves the functions e−(s0+κ)t, te−(s0+κ)t, t2e−(s0+κ)t,
and e−2(s0+κ)t. From this expression we find

∆s2(t) = ∆s2(0) + (∂s0s2(t))∆s0(0) + (∂c0s2(t))∆c0(0)

+ (∂s1s2(t))∆s1(0) + (∂c1s2(t))∆c1(0) + O(2) + O(e−Ct)(5.28)

for some C > 0. Here, ∂c0 is an abbreviation for the partial derivative ∂c0(0), and so
on, and O(2) denotes quadratic terms in the multivariable Taylor expansion. First,
we recall that ∆s0(0) = 0 by (5.16). Next, we calculate the partial derivatives in each
of the three remaining terms,

∂c0s2(t) =
λs1(0)

(s0 + κ)2
− κ(s0 + κ − λ)(s0 + κ − 2λ) + λ2s0

(s0 + κ)4

+
λ(s0 + κ − λ)

(s0 + κ)3

(
c0(0) − s0

s0 + κ

)
− κλ(s0 + κ − λ)

(s0 + κ)3
t,(5.29)
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∂s1s2(t) =
λ

(s0 + κ)2

(
c0(0) − s0

s0 + κ

)
− κ(s0 + κ − λ)

(s0 + κ)3

− κλ

(s0 + κ)2
t,(5.30)

∂c1s2(t) = 1 − λ

s0 + κ
.(5.31)

We substitute these expressions into (5.28), recall (5.22), and carry out the algebra
to obtain

∆s2(t) = ∆s2(0) +

(
1 − λ

s0 + κ

)
∆c1(0)

+
λ

(s0 + κ)2

(
s1(0) +

κ(s0 + κ − λ) − λs0

(s0 + κ)2

)
∆c0(0)

+ O(2) + O(e−Ct), C > 0.(5.32)

In the limit t → ∞, (5.32) yields the condition

∆s2(0) = −
(

1 − λ

s0 + κ

)
∆c1(0)

− λ

(s0 + κ)2

(
s1(0) +

κ(s0 + κ − λ) − λs0

(s0 + κ)2

)
∆c0(0).(5.33)

Finally, ∆c2(t) vanishes exponentially, as follows directly from the conditions (5.22)
and (5.33). Thus, no further conditions besides (5.33) arise at O(ε2).

We conclude that any vector

(
0
α

)
+ ε

(
−
(
1 − λ

s0+κ

)
α

β

)

+ ε2

(
−
(
1 − λ

s0+κ

)
β − λ

(s0+κ)2

(
s1(0) + κ(s0+κ−λ)−λs0

(s0+κ)2

)
α

γ

)
,(5.34)

with α, β, and γ constant (α ,= 0), is tangent to every fiber at the base point up to
and including terms of O(ε2).

5.3. CSP approximations of the fast fibers. We choose the stoichiometric
vectors as the basis vectors, so

A(0) = (A(0)
1 , A(0)

2 ) =

(
0 1
1 0

)
, B(0) =

(
B1

(0)

B2
(0)

)
=

(
0 1
1 0

)
.(5.35)

The CSP condition B1
(0)g = 0 is satisfied if c = h0(s), so the CSP manifold K(0)

ε

coincides with M0. With this choice of initial basis, we have

Λ(0) = B(0)(Dg)A(0) =

(
−(s + κ) −(c− 1)

ε(s + κ − λ) ε(c− 1)

)
.(5.36)
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5.3.1. First iteration. At any point (s, c), we have

A(1)
1 =

(
0
1

)
+ ε

s + κ − λ

s + κ

(
−1
c−1
s+κ

)
, A(1)

2 =

(
1

− c−1
s+κ

)
,(5.37)

B1
(1) =

(
−A(1)

22 , A
(1)
12

)
, B2

(1) =
(
A(1)

21 , −A(1)
11

)
.(5.38)

In the first step, we evaluate A(1)
2 and B1

(1) on K(0)
ε to obtain

A(1)
2 =

(
1
κ

(s+κ)2

)
, B1

(1) =

(
− κ

(s + κ)2
, 1

)
.(5.39)

Hence, the CSP condition,

B1
(1)g = s− (s + κ)c− ε

κ(−s + (s + κ − λ)c)

(s + κ)2
= 0,(5.40)

is satisfied if

c =
s

s + κ
+ ε

κλs

(s + κ)4
− ε2 κ2λs(s + κ − λ)

(s + κ)7
+ O(ε3).(5.41)

Equation (5.41) defines K(1)
ε , the CSPM of order one, which agrees with Mε up to

and including terms of O(ε); recall (5.6).

Then, in the second step, the new fast basis vector, A(1)
1 , and its complement,

B2
(1), in the dual basis are evaluated on K(1)

ε ,

A(1)
1 =

(
0
1

)
− ε

(
1

κ(s+κ−λ)
(s+κ)3

)
+ ε2

(
0

κλs(s+κ−λ)
(s+κ)6

)
+ O(ε3),(5.42)

B2
(1) =

(
A(1)

21 , −A(1)
11

)
.(5.43)

Thus, we see that A(1)
1 is tangent to the fast fibers at their base points up to and

including terms of O(ε), as (5.24) (with α = 1, β = −κ(s+κ−λ)
(s+κ)3 ) implies. As a result,

L(1)
ε approximates T Fε also up to and including terms of O(ε).

Remark 5.1. If one evaluates A(1)
1 on K(0)

ε , as opposed to K(1)
ε as we did above,

then the approximation of T Fε is also accurate up to and including terms of O(ε).
See also Appendix B.

5.3.2. Second iteration. The blocks of Λ(1) are

Λ11
(1) = −(s + κ) + ε

(s + κ − λ)

s + κ

[
(c− 1) +

(
c− s

s + κ

)]

+ ε2 (c− 1)(s + κ − λ)

(s + κ)3

[
−λ(c− 1) + [(s + κ − λ)c− s]

]
,(5.44)

Λ12
(1) =

s

s + κ
− c + ε

c− 1

(s + κ)2

[
λ(c− 1) − [(s + κ − λ)c− s]

]
,(5.45)

Λ21
(1) =

ε2

(s + κ)2

[
(c− 1)(s + κ − λ)(s + κ − 2λ)

+ λ[(s + κ − λ)c− s] + (s + κ − λ)2
(
c− s

s + κ

)]
,(5.46)
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Λ22
(1) =

ε

s + κ

[
λ(c− 1) + (s + κ − λ)

(
s

s + κ
− c

)]

+ ε2 (c− 1)(s + κ − λ)

(s + κ)3

[
λ(c− 1) − [(s + κ − λ)c− s]

]
,(5.47)

with remainders of O(ε3).

In the first step, we update A(1)
2 and B1

(1) and evaluate the updated quantities on

K(1)
ε to obtain

A(2)
12 = 1 + ε2 κλ(2s− κ)(s + κ − λ)

(s + κ)6
,(5.48)

A(2)
22 =

κ

(s + κ)2
+ ε

κλ(κ − 3s)

(s + κ)5

+ ε2 κ2λ(7s− 2κ)(s + κ − λ) + κλ2s(s− 2κ)

(s + κ)8
,(5.49)

B1
(2) =

(
−A(2)

22 , A
(2)
12

)
(5.50)

up to and including terms of O(ε2).
The CSP condition

B1
(2)g = s− (s + κ)c− ε

κ(−s + (s + κ − λ)c)

(s + κ)2

+ ε2κλ

(
(3s− κ)(−s + (s + κ − λ)c)

(s + κ)5

+
(2s− κ)(s + κ − λ)(s− (s + κ)c)

(s + κ)6

)
+ O(ε3)

= 0(5.51)

is satisfied if

c =
s

s + κ
+ ε

κλs

(s + κ)4
+ ε2 κλs(2κλ − 3λs− κs− κ2)

(s + κ)7
+ O(ε3).(5.52)

Equation (5.52) defines K(2)
ε , the CSPM of order two, which agrees with Mε up to

and including terms of O(ε2); recall (5.6).

Then, in the second step, we update A(1)
1 and B2

(1) to obtain

A(2)
11 = −ε

s + κ − λ

s + κ
− ε2 1

(s + κ)3

[
(s + κ − λ)(s + κ − 2λ)(c− 1)

+ (s + κ − λ)2
(
c− s

s + κ

)
+ λ[(s + κ − λ)c− s]

]
.(5.53)

A(2)
21 = 1 + ε

(s + κ − λ)(c− 1)

(s + κ)2
+ ε2 1

(s + κ)4

[
(s + κ − λ)

[
(s + κ − 2λ)(c− 1)

+ (s + κ − λ)

(
c− s

s + κ

)
+ λc

]
− λs

](
2c− 2s + κ

s + κ

)
,(5.54)

B2
(2) =

(
A(2)

21 , −A(2)
11

)
,(5.55)
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with remainders of O(ε3). Evaluating these expressions on K(2)
ε , we obtain

A(2)
11 = −ε

s + κ − λ

s + κ
+ ε2 κ(s + κ − 2λ)(s + κ − λ) + λ2s

(s + κ)4
,(5.56)

A(2)
21 = 1 − ε

κ(s + κ − λ)

(s + κ)3

+ ε2 (s + κ − λ)(κ2(s + κ − 2λ) + κλs) + κλ2s

(s + κ)6
,(5.57)

B2
(2) =

(
A(2)

21 , −A(2)
11

)
,(5.58)

with remainders of O(ε3). Therefore, A(2)
1 is tangent to the fast fibers at their

base points up to and including terms of O(ε2), according to (5.34) (with α = 1,

β = −κ(s+κ−λ)
(s+κ)3 , γ = (s+κ−λ)(κ2(s+κ−2λ)+κλs)+κλ2s

(s+κ)6 ), and L(2)
ε is an O(ε2)-accurate

approximation to T Fε.

Remark 5.2. If one evaluates A(2)
1 on K(1)

ε instead of on K(2)
ε , as we did above,

then the approximation of T Fε is also accurate up to and including terms of O(ε2).

6. Linear projection of initial conditions. The main result of this article,
Theorem 3.2, states that after q iterations the CSP method successfully identifies T Fε

up to and including terms of O(εq+1), where this approximation is given explicitly

by A(q)
1 . This information is postprocessed to project the initial conditions on the

CSPM of order q. In this section, we discuss the accuracy and limitations of this
linear projection.

Geometrically, one knows from Fenichel’s theory that any given initial condi-
tion x0 sufficiently close to Mε lies on a (generally nonlinear) fiber Fp

ε with base
point p on Mε. Hence, the ideal projection would be πF (x0) = p (the subscript F
stands for fiber or Fenichel), and this is, in general, a nonlinear projection.

Within the framework of an algorithm that yields only linearized information
about the fast fibers, one must ask how best to approximate this ideal. A consistent
approach is to identify a point on the slow manifold such that the approximate lin-
earized fiber through it also goes through the given initial condition. This approach
was used, for example, by Roberts [26] for systems with asymptotically stable center
manifolds, where we note that a different method is first used to approximate the
center manifold. Also, this approach is exact in the special case that the perturbed
fast fibers are hyperplanes which need not be vertical. In general, if x0 lies on the
linearized fiber Lp1

ε and if πF (x0) = p2, then the error ‖p1 − p2‖ made by projecting
linearly is O(ε) and proportional to the curvature of the fiber (see also [26]).

For fast-slow systems, there is yet another way to linearly project initial conditions
on the slow manifold. One projects along the approximate CSPF to the space TpFε,
where p is the point on the CSPM that lies on the same ε = 0 fiber as the initial
condition. This type of projection is also consistent, in the sense that it yields an exact
result for ε = 0 but has an error of O(ε) for ε > 0. Moreover, it is algorithmically
simpler, since it does not involve a search for the base point of the linearized fiber on
which the initial conditions lie. However, it has the disadvantage that the projection
is not exact in the special case that the fast fibers are (nonvertical) hyperplanes.

Appendix A. The action of the O(1) Jacobian on TpM0. The spaces
TpFε and TpMε depend, in general, on both the point p ∈ Mε and ε. As a result,
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the basis A also depends on p and ε, and hence Af and As possess formal asymptotic
expansions in terms of ε,

Af =
∑

i=0

εiAi
f , As =

∑

i=0

εiAi
s.(A.1)

Next, we compute the action of the Jacobian on As to leading order.
Lemma A.1. Ker(Dg(p))0 = TpM0 for p ∈ M0. In particular, (Dg)0A0

s = 0.
Proof. The Jacobian is a linear operator, so it suffices to show that every column

vector of a basis for TpM0 vanishes under the left action of the Jacobian. We choose
this basis to be the matrix

( Im
Dyh0

)
.

We compute

Dg0

(
Im

Dyh0

)
=

(
0 0

Dyg2 Dzg2

)(
Im

Dyh0

)
=

(
0

Dyg2 + Dzg2Dyh0

)
.(A.2)

Differentiating both members of the O(1) invariance equation g2(y, h0(y), 0) = 0 with
respect to y, we obtain

Dyg2(y, h0(y), 0) + Dzg2(y, h0(y), 0)Dyh0(y) = 0.(A.3)

Equations (A.2) and (A.3) yield the desired result,

Dg0

(
Im

Dyh0

)
=

(
0
0

)
on M0.(A.4)

Finally, the identity (Dg)0A0
s = 0 follows from the fact that A0

s spans TpM0,
since A0

s = As|ε=0 by (A.1).

Appendix B. The CSPFs in a variant of the CSP method. In section 3.5,
we emphasized that when we construct the CSPFs of order q at the second step of the
qth iteration we use the information obtained in the first step of the same iteration.

In particular, we evaluate A(q)
1 on K(q)

ε and define the CSPF of order q to be its span;
see (3.32).

In this section we examine the asymptotic accuracy of a variant of the CSP

method, where we evaluate A(q)
1 on K(q−1)

ε , so that the CSP quantities updated in the
qth iteration are all evaluated on the same manifold, namely on the CSPM of order
q−1. We show that this modification does not reduce the asymptotic accuracy of the
CSPFs.

The proof is by induction. We assume that the variant of the CSP method
described above yields, at the qth iteration, CSPFs of asymptotic accuracy O(εq) for
0, 1, . . . , q, and we show that the same is true for q+1. Recall that the CSPFs of order
q+1 are constructed at the second step of the (q+1)th iteration and that this step is
carried out via the update matrix L(q). The idea behind the proof is to show that the

modifications introduced in L(q) by replacing K(q+1)
ε by K(q)

ε are of O(εq+2), although

K(q+1)
ε and K(q)

ε differ at terms of O(εq+1). (This property can be attributed to the
fact that, at each iteration, L(q) is zero to leading order; see Lemma 4.1.) Since L(q)

is O(εq+1) on K(q+1)
ε by Lemma 4.1, we conclude that L(q) stays unaltered to leading

order when evaluated on K(q)
ε , instead of on K(q+1)

ε , and thus the CSPFs of order q+1
retain their asymptotic accuracy of O(εq+1). The full details of the calculation will
be published in [33].
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